تعریف فولاد:اصطلاح فولاد (Steel) برای آلیاژهای آهن که تا حدود ۱،۵ درصد کربن دارند و غالبا با فلزهای دیگر همراهند، بکار میرود. خواص فولاد به درصد کربن موجود در آن ، عملیات حرارتی انجام شده بر روی آن و فلزهای آلیاژ دهنده موجود در آن بستگی دارد.
انواع فولاد و کاربرد آنها:
از نظر محتوای کربن،فولاد به سه نوع تقسیم میشود :
فولاد نرم این نوع فولاد کمتر از ۰,۲ درصد کربن دارد و بیشتر در تهیه پیچ و مهره ، سیم خاردار و چرخ دنده ساعت و … بکار میرود .
فولاد متوسط این فولاد بین ۰,۲ تا ۰,۶ درصد کربن دارد و برای تهیه ریل و راه آهن و مصالح ساختمانی مانند تیرآهن مصرف میشود
. فولاد سخت فولاد سخت بین ۰,۶ تا ۱,۶ درصد کربن دارد که قابل آب دادن است و برای تهیه فنرهای فولادی ، تیر ، وسایل جراحی ، مته و … بکار میرود .
از فولادی که تا ۰٫۲ درصد کربن دارد، برای ساختن سیم ، لوله و ورق فولاد استفاده میشود. فولاد متوسط ۰٫۲ تا ۰٫۶ درصد کربن دارد و آن را برای ساختن ریل ، دیگ بخار و قطعات ساختمانی بکار میبرند. فولادی که ۰٫۶ تا ۱٫۵ درصد کربن دارد، سخت است و از آن برای ساختن ابزارآلات ، فنر و کارد و چنگال استفاده میشود
چدن:چدن واژه ای عمومی است و کلیه آلیاژهای آهنی حاوی بیش از ۲ درصد کربن را چدن می نامند
بر اساس تعدادی از منابع آهن ، بعنوان یک محصول جانبی از تصفیه مس تولید میشد - مثل آهن اسفنجی – و بوسیله متالوژی آن زمان قابل تولید مجدد نبوده است. از 1600 تا 1200 قبل از میلاد در خاورمیانه بطور روز افزون از آین فلز استفاده میشد، اما جایگزین کابرد برنز در آن زمان نشد.
تبر آهنی متعلق به عصر آهن سوئد در گاتلند سوئد یافت شده است. از قرن 10 تا 12 در خاورمیانه یک جابجایی سریع در تبدیل ابزار و سلاحهای برنزی به آهنی صورت گرفت. عامل مهم در این جابجائی ، آغاز ناگهانی تکنولوژیهای پیشرفته کار با آهن نبود، بلکه عامل اصلی ، مختل شدن تامین قلع بود. این دوره جابجایی که در زمانهای مختلف و در نقاط مختلفی از جهان رخ داد، دوره ای از تمدن به نام عصر آهن را بوجود آورد.
همزمان با جایگزینی آهن به جای برنز ، فرآیند کربوریزاسیون کشف شد که بوسیله آن به آهن موجود در آن زمان ، کربن اضافه میکردند. آهن را بصورت اسفنجی که مخلوطی از آهن و سرباره به همراه مقداری کربن یا کاربید است، بازیافت کردند. سپس سرباره آنرا با چکشکاری جدا نموده وم حتوی کربن را اکسیده میکردند تا بدین طریق آهن نرم تولید کنند.
مردم خاور میانه دریافتند که با حرارت دادن طولانی مدت آهن نرم در لایه ای از ذغال و آب دادن آن در آب یا روغن میتوان محصولی بسیار محکمتر بدست آورد. محصول حاصله که دارای سطح فولادی است، از برنزی که قبلا" کاربرد داشت محکمتر و مقاومتر بود. در چین نیز اولین بار از آهن شهاب سنگی استفاده شد و اولین شواهد باستان شناسی برای اقلام ساخته شده با آهن نرم در شمال شرقی نزدیک Xinjiang مربوط به قرن 8 قبل از میلاد بدست آمده است. این وسایل از آهن نرم و با همان روش خاورمیانه و اروپا ساخته شده بودند و گمان میرفت که برای مردم غیر چینی هم ارسال میکردند.
در سالهای آخر پادشاهی سلسله ژو ( حدود 550 قبل از میلاد) به سبب پیشرفت زیاد تکنولوژی کوره ، قابلیت تولید آهن جدیدی بوجود آمد. ساخت کورههای بلندی که توانایی حرارتهای بالای k 1300 را داشت، موجب تولید آهن خام یا چدن توسط چینِیها شد. اگر سنگ معدن آهن را با کربن k 1470-1420 حرارت دهیم، مایع مذابی بدست میآید که آلیاژی با 5/96% آهن و 5/53% کربن است. این محصول محکم را میتوان به شکلهای ریز و ظریفی در آورد. اما برای استفاده ، بسیار شکننده میباشند، مگر آنکه بیشتر کربن آنرا از بین ببرند.
از زمان سلسله ژو به بعد اکثر تولیدات آهن در چین به شکل چدن است. با این همه آهن بعنوان یک محصول عادی که برای صدها سال مورد استفاده کشاورزان قرار گرفته است، باقی ماند و تا زمان سلسله شین ( حدود 221 قبل از میلاد ) عظمت چین را واقعا" تحت تاثیر قرار نداد.
توسعه چدن در اروپا عقب افتاد، چون کورههای ذوب در اروپا فقط توانایی k 1000 را داشت. در بخش زیادی از قرون وسطی در اروپای غربی آهن را همچنان با روش تبدیل آهن اسفنجی به آهن نرم بدست میآوردند. تعدادی از قالبگیریهای آهن در اروپا بین سالهای 1150 و 1350 بعد از میلاد در دو منطقه در سوئد به نامهای Lapphyttan و Vinarhyttan انجام شد.
دانشمندان میپندارند شاید این روش بعد از این دو مکان تا مغولستان آن سوی روسیه ادامه یافته باشد، اما دلیل محکمی برای اثبات این فرضیه وجود ندارد. تا اواخر قرن نوزدهم در هر رویدادی یک بازار برای کالاهای چدنی بوجود آمد، مانند درخواست برای گلولههای توپ چدنی.
در آغاز برای ذوب آهن از زغال چوب هم بعنوان منبع حرارتی و هم عامل کاهنده استفاده میشد. در قرن 18 در انگلستان تامین کنندگان چوب کم شدند و از زغال سنگ که یک سوخت فسیلی است، بعنوان منبع جانشین استفاده شد. این نوآوری بوسیلـــه Abraham Darby انرژی لازم برای انقلاب صنعتی را تامین نمود.
پیدایـــــــش
آهن یکی از رایجترین عناصر زمین است که تقریبا" 5% پوسته زمین را تشکیل میدهد.آهن از سنگ معدن هماتیت که عمدتا" Fe2O3 میباشد، استخراج میگردد. این فلز را بوسیله روش کاهش با کربن که عنصری واکنشپذیرتر است جدا میکنند. این عمل در کوره بلند در دمای تقریبا" 2000 درجه سانتیگراد انجام میپذیرد.
در سال 2000 ، تقریبا" 1100 میلیون تن سنگ معدن آهن با رشد ارزش تجاری تقریبا" 25 میلیارد دلار آمریکا استخراج شد. درحالیکه استخراج سنگ معدن آهن در 48 کشور صورت میگیرد، چین ، برزیل ، استرالیا ، روسیه و هند با تولید 70% سنگ آهن جهان پنج کشور بزرگ تولید کنندگان آن بهحساب میآیند. برای تولید تقریبا" 572 میلیون تن آهن خام 1100 میلیون تن سنگ آهن مورد نیاز است.
خصوصیات قابل توجه
جرم یک اتم معمولی آهن 56 برابر جرم یک اتم معمولی هیدروژن میباشد. عقیده بر این است که آهن ، دهمین عنصر فراوان در جهان است. Fe مخفف واژه لاتین ferrum برای آهن میباشد. این فلز ، از سنگ معدن آهن استخراج میشود و بهندرت به حالت آزاد (عنصری) یافت میگردد.برای تهیه آهن عنصری ، باید ناخالصیهای آن با روش کاهش شیمیایی از بین برود. آهن برای تولید فولاد بکار میرود که عنصر نیست، بلکه یک آلیاژ و مخلوطی است از فلزات متفاوت ( و تعدادی غیر فلز بخصوص کربن ). هسته اتمهای آهن دارای بیشترین نیروی همگیر در هر نوکلئون هستند بنابراین آهن با روش همجوشی ، سنگینترین و با روش شکافت اتمی ، سبکترین عنصری است که بصورت گرمازایی تولید میشود.
وقتی یک ستاره که دارای جرم کافی میباشد چنین کاری انجام دهد، دیگر قادر به تولید انرژی در هستهاش نبوده و یک ابر اختر پدید میآید. آهن رایجترین فلز در جهان به حساب میآید. الگوهای جهان شناختی با یک جهان باز پیشبینی زمانی را میکند که در نتیجه واکنشهای همجوشی و شکافت هسته ، همه چیز به آهن تبدیل خواهد شد!
کاربردهــــــــــا
کاربرد آهن از تمامی فلزات بیشتر است و 95 درصد فلزات تولید شده در سراسر جهان را تشکیل میدهد. قیمت ارزان و مقاومت بالای ترکیب آن استفاده از آنرا بخصوص در اتومبیلها ، بدنه کشتیهای بزرگ و ساختمانها اجتناب ناپذیر میکند. فولاد معروفترین آلیاژ آهن است و تعدادی از گونههای آهن به شرح زیر میباشد: • آهن خام که دارای 5%-4% کربن و مقادیر متفاوتی ناخالصی از قبیل گوگرد ، سیلیکون و فسفر است و اهمیت آن فقط به این علت است که در مرحله میانی مسیر سنگ آهن تا چدن و فولاد قرار دارد.• چدن ، شامل 5/3%-2% کربن و مقدار کمی منگنز میباشد. ناخالصیهای موجود در آهن خام مثل گوگرد و فسفر که خصوصیات آنرا تحت تاثیر منفی قرار میدهد، در چدن تا حد قابل قبولی کاهش مییابند. نقطه ذوب چدن بین k 1470-1420 میباشد که از هر دو ترکیب اصلی آن کمتر است و آنرا به اولین محصول ذوب شده پس از گرم شدن همزمان کربن و آهن تبدیل میکند. چدن بسیار محکم ، سخت و شکننده میباشد. چدن مورد استفاده حتی چدن گرمای سفید موجب شکستن اجسام میشود.
• فولاد کربن شامل 5/1% - 5/0% کربن و مقادیر کم منگنز ، گوگرد ، فسفر و سیلیکون است.
• آهن ورزیده ( آهن نرم) دارای کمتر از 5/0% کربن میباشد و محصولی محکم و چکشخوار است، اما به اندازه آهن خام گدازپذیر نیست. حاوی مقادیر بسیار کمی کربن است ( چند دهم درصد). اگر یک لبه آن تیز شود، بهسرعت تیزی خود را از دست میدهد.
• فولادهای آلیاژ حاوی مقادیر متفاوتی کربن بعلاوه فلزات دیگر مانند کروم ، وانادیم ، مولیبدن ، نیکل ، تنگستن و ... میباشد.
• اکسیدهای آهن برای ساخت ذخیره مغناطیسی در کامپیوتر مورد استفاده قرار میگیرند. آنها اغلب با ترکیبات دیگری مخلوط شده و خصوصیات مغناطیسی خود را بصورت محلول هم حفظ میکنند.
ترکیبات
معمولترین حالات اکسیداسیون آهن عبارتند از: • حالت فروس 2+Fe• حالت فریک 3+Fe
• حالت فریل 4+Fe که با تعدادی آنزیم ( مثلا" پیروکسیدازها ) پایدار شده است.
• آهن ( VI) هم معروف است (اگرچه کمیاب میباشد). درصورتیکه به شکل فرات پتاسیم باشد، ( K2FeO ) یک اکسید کننده انتخابی برای الکلهای نوع اول میباشد. این ماده جامد فقط در شرائط خلاء و ارغوانی تیره پایدار است، هم به صورت محلول سوزآور و هم بصورت یک ماده جامد.
• کاربید آهن Fe3C به نام سمنتیت معروف است.
بیولـــــــوژی
آهن ، اتم اصلی مولکول هِم ( بخشی از گلبول قرمز) و بنابراین جزء ضروری تمامی هموپروتئینها محسوب میشود. به همین علت ، وجود این عنصر در حیوانات حیاتی میباشد. همچنین آهن غیر آلی در زنجیرههای آهن – گوگرد بسیاری از آنزیمها یافت میشود. باکتریها اغلب از آهن استفاده میکنند. وقتی بدن در حال مبارزه با یک عفونت باکتریایی است، برای عدم دستیابی باکتری به آهن ، این عنصر را پنهان میکند.ایزوتوپها
آهن بطور طبیعی دارای چهار ایزوتوپ پایدار Fe-54 , Fe56 , Fe-57 , Fe-58 میباشد. فراوانی نسبی ایزوتوپهای آهن در طبیعت تقریبا" Fe-54 8/5% ، Fe-56 7/91%، Fe-57 2/2% و Fe-58 3/0% است.Fe-60 که نوکلید پرتوزای غیر فعال است، دارای نیمه عمر 5,1 (Myr) میباشد. بیشتر تلاش گذشته برای اندازه گیری ترکیبات ایزوتوپی آهن بهعلت فرآیندهایی که توام با نوکلئوسنتز ( مانند مطالعات شهاب سنگها ) و شکلگیری کانیها هستند، حول محور تعیین انواع مختلف Fe-60 صورت گرفته است.در وهلههای مختلف ، شهاب سنگهای Semarkona و Chervony Kut میتوان بین تمرکز Ni-nickel|60 ( محصول اخترچه Fe-60 ) و فراوانی ایزوتوپهای پایدار آهن ارتباطی یافت که دلیلی برای وجود آهن 60 در زمان شکلگیری منظومه شمسی میباشد. احتمالا" انرژی آزاد شده توسط فروپاشی آهن 60 به همراه انرژی رها شده بر اثر فروپاشی نوکلئید پرتوزای Al-26 ، در ذوب مجدد و تفکیک اخترچههای بعد از شکلگیری آنها 4,6 میلیارد سال پیش تاثیر داشته است. فراوانی Ni-60 موجود در مواد فرازمینی نیز ممکن است آگاهی بیشتری در مورد منشاء منظومه شمسی و تاریخ ابتدایی آن ارائه نماید.
در بین ایزوتوپهای پایدار فقط آهن 57 دارای اسپین اتمی است،(2/1-). به همین خاطر آهن 57 در شیمی و بیوشیمی بعنوان یک ایزوتوپ اسپینی دارای کاربرد است.
هشدارهـــــــــا
مصرف بیش از حد آهن خوراکی ایجاد مسمومیت میکند، چون مقدار زیاد آهن فروس با پروکسیدهای بدن واکنش کرده ، تولید بنیانهای آزاد میکند. وقتی مقدار آهن در بدن طبیعی است، مکانیسمهای ضد اکسیداسیون خود بدن قادر به کنترل این فرآیند میباشد. اگر مقدار آهن بیش از نرمال باشد، مقادیر غیرقابل کنترل بنیانهای آزاد بوجود میآید.مقدار کشنده آهن برای یک کودک 2 ساله تقریبا" 3 گرم بوده و یک گرم آن مسمومیت جدی در پی خواهد داشت. گزارشهایی مبنی بر مسمومیت کودکان در اثر مصرف 10 تا 50 عدد قرص سولفات آهن در کوتاه مدت وجود دارد.مصرف بیش از حد آهن بر اثر خوردن غیر عمدی داروها عامل جدی مرگ و میر در کودکان است. افزایش غیرقابل کنترل آهن در بدن ، موجب بروز بیماری به نام hemochromatosis میگردد. آهن اضافی در کبد جمع شده ، موجب بیماری آهن زدگی siderosis و آسیبهای عضوی میشود. به همین دلیل افرادیکه کمبود آهن ندارند، نباید مکملهای آهن مصرف کنند.
استخراج آهن
با توجه به کشف یک تبر آهنی متعلق به 3000 سال پیش از میلاد در داخل یکی از قبرهای سومریان واقع در شهر اور که در جنوب بینالنهرین قرار داشت، نشان میدهد که استفاده از آهن توسط انسان از حدود 3000 سال پیش از میلاد مسیح آغاز و عمدتاً در کشورهای مصر ، آشور ، چین و هندوستان رواج داشت. در آغاز انسان از آهن طبیعی که بهصورت سنگ معدن آهن با درجات خلوص متفاوت بدست میآمد، استفاده میکرد.با این حال ، نظر دیگری وجود دارد که انسانهای آن روزگاران از شهاب سنگها بهعنوان آهن خالصتر استفاده میکردند. استفاده از آهن خالص درحدود 1300 سال پیش از میلاد امکانپذیر شد که به ظن قوی بطور تصادفی بر اثر گرما دادن شدید صخرههای کانی ، آهن خالص توسط ذغال صورت گرفت با حرارت دادن گل اخری و ذغال نیز آهن استخراج میکردند.
سیر تحولی و رشد
روند استخراج آهن از ترکیبهای طبیعی آهن به مرور زمان ، راه تکامل میپیمود تا اینکه نخستین کوره استخراج آهن به سبک امروزی که به کوره کانالانی معروف بود، نوآوری شد. این کوره دارای آتشدانی به ابعاد 75×60×60 سانتیمتر بود. سیر تکاملی این روند به آنجایی رسید که امروزه ، کارخانههای عظیم استخراج و ذوب آهن و فولاد با ظرفیت چندین میلیون تن به وجود آمده است.
سنگ معدنهای آهن
سنگ معدنهایی که آهن از آن استخراج میشود، بیشتر بهصورت اکسیدهای آهن ، مانند مگنتیت یا هماتیت است که با 2 تا 20 درصد ناخالصی (نظیر سیلیکاتها و آلومیناتها) همراه است. این ناخالصیها در کوره از آهن جدا شده بهصورت تفاله خارج میشوند. سنگ معدن تصفیه شده و تغلیظ شده بهصورت پودر یا دانههای ریز در کوره وارد میشود. مناسبترین اندازه ذرات آن بین 6 تا 25 میلیمتر است. یادآوری میشود که امروزه از سولفید طبیعی آهن (پیریت) در استخراج آهن استفاده نمیشود، بلکه مصرف عمده آن در اسید سولفوریک سازی است.فرآیندهای اولیه استخراج آهن
استخراج آهن از سنگ معدنهای آن طی فرایندهای فیزیکی و مکانیکی و شیمیایی تحت شرایط ویژه ای صورت میگیرد.در مرحله آغازی ، سنگ معدن باید طی چندین مرحله از عملیات از جمله : خرد کردن ، آسیاب کردن ، سرند کردن ، شستشو ، استفاده از جدا کننده مغناطیسی و یا به روش فلوتاسیون تغلیظ شود. محلول غلیظ شده معمولاً دارای 60 تا 65 درصد آهن ، 8 تا 12 درصد سیلیس میباشد. پس از تلغیظ سنگ معدن آن را باید به اندازههایی به ابعاد 6 تا 25 میلیمتر که مناسب برای تغذیه کورههای وزشی است، تبدیل کرد که این عمل را اصطلاحاً آگلومریزه شدن مینامند.
استخراج آهن از سنگ معدنهای آن عمدتاً با استفاده از کورههای وزشی صورت میگیرد که در حقیقت یک رآکتور بزرگ شیمیایی است که در آن مخلوطی از سنگ آهک ، سنگ معدن آهن و زغال کک گرما داده میشود.
مواد اولیه مورد نیاز استخراج آهن
سنگ معدن آهن
در مجاورت ذغال بر اثر گرما در کوره احیا میشود و سپس بر اثر جریانی از گازهای احیا کننده داغ که از سوختن کک در هوای گرم پایین کوره تولید میشود و در جهت عکس مسیر آهن حرکت میکند، ذوب میشود. آهن مذاب و تفاله حاصل از سنگ معدن به ازای هر دو تا چهار ساعت از آتشدان کوره تخلیه میشود. اگر مواد اولیه بطور پیوسته از بالای کوره وارد شود، در این صورت ، کوره میتواند بطور پیوسته کار کند. محصول کوره وزشی همان چدن است که برای تبدیل آن به دیگر مشتقات آهن ، بویژه فولاد ، باید در آن تغییراتی داد.زغال کک
مشخصات ساختاری آن عبارت است از : کربن ثابت 85 تا 90 درصد ، خاکستر 5 تا 13 درصد ، رطوبت تا 8 درصد ، مواد فرّار 1.6 تا 11 درصد ، و گوگرد 0.5 تا 1.2 درصد. نقش کک در فرآیند کورههای وزشی تولید گازهای احیا کننده است و در اثر سوختن در پایین کوره انجام میپذیرد و مقاومت مکانیکی آن نیز در عمل مهم است. اندازه کک مورد مصرف ، باید بین 1.5 تا 75 میلیمتر باشد.سنگ آهک
به منظور کمک کردن ذوب و پایین آوردن دمای ذوب ناخالصیها به سنگ معدن افزوده میشود. نسبت تشکیل دهندههای بازی در مخلوط یعنی (CaO) و (MgO) به تشکیل دهندههای اسیدی یعنی (SiO2) باید در حد ثابتی حفظ شود تا تفالههای کف مانند و سبک (سیلیکاتهای کاسیم و منیزیم ) بطور کامل تشکیل شود و سایر ناخالصیهای همراه با خود را از آهن جدا کند. برای این منظور ، سنگ آهک و دولومیت بکار گرفته میشود.گاهی برای کنترل ترکیب تفالههای جاری ، مقداری سیلیکات نیز بدان اضافه میشود. مناسبترین اندازه این دسته از مواد برای کورههای وزشی بین 70 تا 75 میلیمتر است.
واکنشهای کوره استخراج آهن
پس از اینکه کک در قسمت پایین کوره بارگیری شده ، آن را تا حدود گرم میکنند تا بر اثر وزش هوای گرم شروع به سوختن کرده ، دما را در دهانه قسمت سوخت کوره تا افزایش دهد. دیاکسید کربن حاصل در این دما ناپایدار بوده ، بوسیله کک موجود در محیط به منوکسید کربن تبدیل میشود. بخار آب همراه با هوای داغ در واکنش با کک نیز خود تولید منوکسید کربن میکند.واکنشهای انجام شده در دهانه سوخت که در حد بین مخزن سوخت و سنگ معدن آهن قرار دارد، در قسمت بالاتر کوره که دما زیر است، اکسیدهای آهن بوسیله منوکسید کربن و هیدروژن حاصل احیا میشوند. در قسمت بالاتر کوره وقتی که دما به تا رسید، سنگ آهک نیز تجزیه میشود. در قسمت پایین کوره دربالاتر از اکسیدهای آهن بوسیله کربن احیا شده ، دیاکسید کربن حاصل بطور همزمان با کک واکنش داده و به منوکسید کربن تبدیل میشود.
این احیا به احیای مستقیم معروف است که نیازی به انرژی زیاد دارد. بیشتر گوگرد که همراه کک وارد کوره میشود، در داخل آن به تبدیل میشود. حاصل با ترکیب شده آنها را به تبدیل می کند. حاصل ضمن واکنش ، آهن آزاد میکند. میزان و چگونگی حذف گوگرد به دمای تفاله و نسبت بستگی دارد.
احیای مستقیم
احیایی است که در آن ، سنگ معدن آهن ، بوسیله عوامل احیا کننده جامد یا گازی احیا میشود. با توجه به مقدار کربن موجود در آهن ، این عنصر بهصورت دو نوع محصول آهن یعنی چدن و فولاد عرضه میشود.اکسیداسیون-احیا
واکنشی را که در آن ، تبادل الکترون صورت میگیرد، واکنش اکسیداسیون- احیا Oxidation - reduction نامیده میشود.تبادل الکترونی
احیا کننده 1<----- ne + احیا کننده 1اکسید کننده 2<-----ne - احیا کننده 2
اکسید کننده 2 + اکسید کننده1<----- احیا کننده 2 + احیا کننده 1
پس در نتیجه تبادل الکترونی بین یک اکسید کننده و یک احیا کننده یک واکنش شیمیایی رخ می دهد.
فرآیند اکسیداسیون (اکسایش)
فرآیندی است که در آن یک جسم (اکسید کننده) الکترون میگیرد و عدد اکسایش یک اتم افزایش مییابد.فرآیند احیا (کاهش)
فرایندی است که در آن یک جسم (احیا کننده) الکترون از دست میدهد و عدد اکسایش یک اتم کاهش مییابد.مثالی از واکنشهای اکسایش و کاهش
بر این اساس ، واکنش زیر یک واکنش اکسایش و کاهش میباشد. چون عدد اکسایش اتم S از صفر به +4 افزایش پیدا میکند و میگوییم گوگرد اکسید شده است و عدد اکسایش اتم O از صفر به -2 کاهش پیدا کرده است و میگوییم اکسیژن کاهیده شده است:S + O2 → SO2
که در آن ، در طرف اول عدد اکسیداسیون هر دو ماده صفر و در طرف دوم ، عدد اکسیداسیون گوگرد در ترکیب +4 و اکسیژن ، -2 است.
اما در واکنش زیر اکسایش- کاهش انجام نمیشود، زیرا تغییری در عدد اکسایش هیچ یک از اتمها به وجود نیامده است:
SO2 + H2O → H2SO4
که در SO2 ، عدد اکسیداسیون S و O بترتیب ، +4 و -2 و در آب ، عدد اکسیداسیون H و O بترتیب +1 و -2 و در اسید در طرف دوم ، عدد اکسیداسیون H و S و O بترتیب ، +1 ، +4 و -2 است.
عامل اکسنده و عامل کاهنده
با توجه به چگونگی نسبت دادن اعداد اکسایش ، واضح است که نه عمل اکسایش و نه عمل کاهش بتنهایی انجام پذیر نیستند. چون یک ماده نمیتواند کاهیده شود مگر آن که همزمان ماده ای دیگر ، اکسید گردد، ماده کاهیده شده ، سبب اکسایش است و لذا عامل اکسنده نامیده میشود و مادهای که خود اکسید میشود، عامل کاهنده مینامیم.بعلاوه در هر واکنش ، مجموع افزایش اعداد اکسایش برخی عناصر ، باید برابر مجموع کاهش عدد اکسایش عناصر دیگر باشد. مثلا در واکنش گوگرد و اکسیژن ، افزایش عدد اکسایش گوگرد ، 4 است. تقلیل عدد اکسایش ، 2 است، چون دو اتم در معادله شرکت دارد، کاهش کل ، 4 است.
موازنه معادلات اکسایش- کاهش
دو روش برای موازنه واکنشهای اکسایش- کاهش بکار برده میشود: روش یون- الکترون و روش عدد اکسایش.روش یون- الکترون برای موازنه معادلات اکسایش- کاهش
در موازنه معادلات به روش یون- الکترون ، دو دستور کار که کمی با هم متفاوتاند، مورد استفاده قرار میگیرد. یکی برای واکنشهایی که در محلول اسیدی انجام میگیرد و دیگری برای واکنشهایی که در محلول قلیایی صورت میپذیرد.• مثالی برای واکنشهایی که در محلول اسیدی رخ میدهد، عبارت است:
Cr2O7-2 + Cl- → Cr+3 + Cl2
این واکنش موازنه نشده ، طی عملیات زیر موازنه می شود:
_ابتدا معادله را به صورت دو معادله جزئی که یکی برای نشان دادن اکسایش و دیگری برای نشان دادن کاهش است، تقسیم کرده و عنصر مرکزی را در هر یک از این نیم واکنش ها موازنه می کنیم:
Cr2O7-2 → 2Cr+3
2Cl- → Cl2
_اتمهای O و H را موازنه میکنیم. در سمتی که کمبود اکسیژن دارد، به ازای هر اکسیژن یک H2O اضافه میکنیم و در سمتی که کمبود هیدروژن دیده میشود، با افزودن تعداد مناسب +H آن را جبران می کنیم. در مثال بالا، طرف راست ، معادله جزئی اول 7 اتم اکسیژن کم دارد، پس به طرف مزبور 7H2O افزوده میشود. پس اتمهای H معادله جزئی اول را با اضافه کردن چهارده +H به طرف چپ معادله، موازنه میکنیم. معادله جزئی دوم ، بصورت نوشته شده ، از لحاظ جرمی ، موازنه است:
14H+ + Cr2O7-2 → 2Cr+3 + 7H2O
2Cl-→Cl2
_در مرحله بعد ، باید معادلات جزئی را از نظر بار الکتریکی موازنه میکنیم. در معادله جزئی جمع جبری بار الکتریکی طرف چپ برابر +12 و در طرف راست +6 است. 6 الکترون به سمت چپ اضافه میشود تا موازنه بار برای معادله جزئی اول حاصل شود. معادله دوم با افزودن دو الکترون به طرف راست ان موازنه میشود، ولی چون تعداد الکترونهای از دسترفته در یک معادله جزئی باید برابر تعداد الکترونهای بدست آمده در معادله جزئی دیگر باشد، بنابراین طرفین معادله جزئی دوم را در 3 ضرب میکنیم:
6e- + 14H+ +Cr2O7-2 → 2Cr+3 + 7H2O
6Cl- → 3Cl2 + 6e
_معادله نهایی ، با افزایش دو معادله جزئی و حذف الکترونها بدست میآید:
14H+ + Cr2O7-2 + 6Cl- → 2Cr+3 + 3Cl2 + 7H2O
مثالی برای واکنش هایی که در محلول قلیایی صورت میگیرد:
MnO4- + N2H4 → MnO2 + N2
_معادله به دو معادله جزئی تقسیم می شود:
MnO4- → MnO2
N2H4→N2
_برای موازنه H و O در این واکنشها ، درسمتی که کمبود اکسیژن دارد، به ازای هر اتم اکسیژن -2OH و سمت دیگر یک H2O اضافه میکنیم و در سمتی که کمبود هیدروژن دارد به ازای هر اتم هیدروژن ، یک H2O و در سمت مقابل یک -OH اضافه میکنیم. سمت راست معادله جزئی اول دو اتم O کم دارد. لذا -4OH به سمت راست و 2H2Oبه سمت چپ میافزاییم:
2H2O + MnO4- → MnO2 + 4OH
برای موازنه جرمی معادله جزئی دوم ، باید چهار اتم هیدروژن به سمت راست اضافه کنیم، لذا 4H2O به سمت راست و -4OH به سمت چپ اضافه میکنیم:
-4OH + N2H4 → N2 + 4H2O
_برای موازنه بار الکتریکی ، هر جا لازم است، الکترون اضافه میکنیم و در این جا بطرف چپ معادله جزئی اول ، سه الکترون و بطرف چپ معادله جزئی دوم ، چهار الکترون افزوده میشود و برای موازنه کردن الکترونهای بدست آمده و از دست رفته ، مضرب مشترک گرفته و معادله اول را در 4 و معادله دوم را در 3 ، ضرب میکنیم:
12e- + 8H2 + 4MnO4- → 4MnO2 + 16OH
_جمع دو معادله جزئی، معادله نهایی را بدست میدهد:
4MnO4- + 3N2H4 →4OH- + 4MnO2 + 3N2 + 4H2O
روش عدد اکسایش برای موازنه واکنشهای اکسایش- کاهش
موازنه شامل سه مرحله است. برای مثال واکنش نیتریک اسید و هیدروژن سولفید را در نظر میگیریم. معادله موازنه نشده به قرار زیر است:
HNO3 + H2S→ NO + S + H2O
_برای تشخیص اتمهایی که کاهیده یا اکسیده میشوند، اعداد اکسایش آنها را از معادله بدست میآوریم:
نیتروژن کاهیده شده (از +5 به +2 ، کاهشی معادل 3 در عدد اکسایش) و گوگرد اکسید شده است (از -2 به صفر ، یعنی افززایشی معادل 2 در عدد اکسایش).
_برای ان که مجموع کاهش در اعداد اکسایش برابر با مجموع افزایش این اعداد باشد، ضرایبی متناسب به هر ترکیب نسبت میدهیم:
2HNO3 + 3H2S→2NO + 3S +H2O
_موازنه معادله را ، با بررسی دقیقتر ، کامل میکنیم. در مراحل پیشین تنها موازنه موادی مطرح شد که اعداد اکسایش انها تغییر میکند. در این مثال ، هنوز ضریبی برای H2O در نظر گرفته نشده است. ولی ملاحظه میشود که در سمت چپ واکنش 8 اتم H وجود دارد. همان سمت 4 اتم O نیز اضافی دارد. بنابراین ، برای تکمیل موازنه ، باید در سمت راست معادله ، 4H2O نشان داده شود:
2HNO3 + 3H2S → 2NO +3S + 4H2O
پس معادلات اکسایش- کاهش مانند واکنشهای الکتروشیمیایی و واکنش های یونی را میتوان با یکی از دو روش نامبرده موازنه کرد.
کوره بلند آهن
مراحل تولید آهن در کوره
از بالای کوره بلند ، کانه یا کانی آهن ، کک و سنگ آهک را که "گداز آور" یا "بار کوره" نیز مینامند، وارد میکنند و از پایین کوره نیز جریان شدیدی از هوای گرم میدهند. این هوای گرم گاهی با اکسیژن تقویت میشود. هوای ورودی با کک یا همان کربن ، ترکیب شده ، به کربن منوکسید کاهیده میشود و مقدار قابل ملاحظهای گرما آزاد میکند. در این مرحله دمای کوره بالاترین مقدار یعنی حدود 1500ċ را دارد.بار کوره که در حال نزول است به تدریج گرم میشود. نخست رطوبت آن گرفته و سپس کانی آهن بطور جزئی توسط کربن منوکسید کاهیده میشود. در قسمت داغتر کوره ، کاهش کانی آهن به آهن فلزی ، تکمیل میشود و سنگ آهک نیز CO2 از دست میدهد و با ناخالصیهای موجود در کانی آهن (که بطور عمده سیلیسیم دیاکسید است) ترکیب شده ، سرباره مذاب تولید میشود. آهن مذاب و سرباره مذاب با یکدیگر مخلوط نمیشوند و در ته کوره دو لایه جداگانه تشکیل میشوند.
واکنشهای این مراحل عبارتند از:
در ناحیه پایینتری از کوره که داغتر است به کاهیده می شود:
در داغترین ناحیه کاهش به آهن فلزی صورت می گیرد:
نقش سرباره
لازم به ذکر است که سرباره مذاب عمدتا کلسیم سیلیکات است و بوسیله اثر نمایی گدازآور بر روی هرزه سنگ تولید میشود. این سرباره بر روی آهن مذاب شناور است و به این ترتیب فلز را از اکسید شدن بوسیله هوای ورودی حفظ میکند.نقش مقدار زیاد کک در کوره
واکنشهای کاهش اکسیدهای آهن برگشت پذیرند و کاهش کامل فقط وقتی صورت میگیرد که دیاکسید کربن حاصل را از بین ببریم. این کار توسط کاهش آن با مقدار زیاد کک صورت میگیرد.گاز خروجی از بالای کوره
گازی که از بالای کوره خارج میشود، بطور عمده از منواکسید کربن و نیتروژن موجود در هوای دمیده شده ، تشکیل میشود. این مخلوط گازی داغ را با هوا ترکیب میکنند تا منواکسید کربن آن بسوزد و محصولات این احتراق را که گرمای بیشتری دارد از درون دستگاه تبادل گرما عبور میدهند و به کمک آن هوای ورودی را گرم میکنند.جایگزین هوا در بعضی از کورهها
در بعضی کورهها به جای هوا از اکسیژن نسبتا خالص استفاده میکنند. در این مورد ، ابعاد کوره کوچکتر و دمای آن قدری زیادتر است و مونواکسید کربن حاصل نسبت به مخلوط نیتروژن و مونواکسید کربن ، سوخت بهتری است.فولاد
اصطلاح فولاد (Steel) برای آلیاژهای آهن که تا حدود 1،5 درصد کربن دارند و غالبا با فلزهای دیگر همراهند، بکار میرود. خواص فولاد به درصد کربن موجود در آن ، عملیات حرارتی انجام شده بر روی آن و فلزهای آلیاژ دهنده موجود در آن بستگی دارد.فـولـادهــا
به طور کلی فولادهای مورد استفاده در صنعت و قالبسازی به دسته های زیر تقسیم می شوند که هر کدام دارای مصارف و قابلیت های ویژه مخصوص به خود هستند. لذا ما در این سایت با پیاده سازی جدول این فولادها تحت استانداردهای مختلف به بررسی آنها پرداخته ایم.انواع فولادها عبارتند از :
1- فولادهای ابزاری
. فولادهای ابزاری گرمکار
. فولادهای ابزاری سردکار
. فولادهای ابزاری کربنی
2- فولادهای ساختمانی
. فولادهای ساختمانی آلیاژی
. فولادهای ساختمانی کربنی
3- فولادهای بلبرینگی
4- فولادهای نسوز
5- فولادهای فنری
6- فولادهای ضد زنگ و ضد اسید و قلیا
7- فولادهای تندبر (خشکه هوایی)
:: فولادهای ابزاری گرمکار
این دسته از فولادها به چهار دسته فولاد با ویژگی ها و موارد مصرف مشخص طبقه بندی می شوند که طبق استاندارد W.Nr آلمان به ترتیب زیر می باشند.
. فولاد ابزاری گرمکار 2567
. فولاد ابزاری گرمکار 2344
. فولاد ابزاری گرمکار 2312
. فولاد ابزاری گرمکار 2713
:: فولادهای ابزاری سردکار
این دسته از فولادها به پنج دسته فولاد با ویژگی ها و موارد مصرف مشخص طبقه بندی می شوند که طبق استاندارد W.Nr آلمان به ترتیب زیر می باشند.
. فولاد ابزاری سردکار 2080
. فولاد ابزاری سردکار 2436
. فولاد ابزاری سردکار 2542
. فولاد ابزاری سردکار 2510
. فولاد ابزاری سردکار 2210
کاربرد انواع مختلف فولاد
از فولادی که تا 0.2 درصد کربن دارد، برای ساختن سیم ، لوله و ورق فولاد استفاده میشود. فولاد متوسط 0.2 تا 0.6 درصد کربن دارد و آن را برای ساختن ریل ، دیگ بخار و قطعات ساختمانی بکار میبرند. فولادی که 0.6 تا 1.5 درصد کربن دارد، سخت است و از آن برای ساختن ابزارآلات ، فنر و کارد و چنگال استفاده میشود.
ناخالصیهای آهن و تولید فولاد
آهنی که از کوره بلند خارج میشود، چدن نامیده میشود که دارای مقادیری کربن ، گوگرد ، فسفر ، سیلیسیم ، منگنز و ناخالصیهای دیگر است. در تولید فولاد ، دو هدف دنبال میشود:
1. سوزاندن ناخالصیهای چدن
2. افزودن مقادیر معین از مواد آلیاژ دهنده به آهن
منگنز ، فسفر و سیلیسیم در چدن مذاب توسط هوا یا اکسیژن به اکسید تبدیل میشوند و با کمک ذوب مناسبی ترکیب شده ، به صورت سرباره خارج میشوند. گوگرد به صورت سولفید وارد سرباره میشود و کربن هم میسوزد و منوکسید کربن (CO) یا دیاکسید کربن (CO2) در میآید. چنانچه ناخالصی اصلی ، منگنز باشد، یک کمک ذوب اسیدی که معمولا دیاکسید سیلسیم (SiO2) است، بکار میبرند:
(MnO + SiO2 -------> MnSiO3(l
و چنانچه ناخالصی اصلی ، سیلسیم یا فسفر باشد (و معمولا چنین است)، یک کمک ذوب بازی که معمولا اکسید منیزیم (MgO) یا اکسید کلسیم (CaO) است، اضافه میکنند:
(MgO + SiO2 -------> MgSiO2(l
(6MgO + P4O10 -------> 2Mg3(PO4)2(l
کوره تولید فولاد و جدا کردن ناخالصیها
معمولا جداره داخلی کوره ای را که برای تولید فولاد بکار میرود، توسط آجرهایی که از ماده کمک ذوب ساخته شدهاند، میپوشانند. این پوشش ، مقداری از اکسیدهایی را که باید خارج شوند، به خود جذب میکند. برای جدا کردن ناخالصیها ، معمولا از روش کوره باز استفاده میکنند. این کوره یک ظرف بشقاب مانند دارد که در آن 100 تا 200 تن آهن مذاب جای میگیرد.بالای این ظرف ، یک سقف مقعر قرار دارد که گرما را روی سطح فلز مذاب منعکس میکند. جریان شدیدی از اکسیژن را از روی فلز مذاب عبور میدهند تا ناخالصیهای موجود در آن بسوزند. در این روش ناخالصیها در اثر انتقال گرما در مایع و عمل پخش به سطح مایع میآیند و عمل تصفیه ، چند ساعت طول میکشد. البته مقداری از آهن ، اکسید میشود که آن را جمعآوری کرده ، به کوره بلند باز میگردانند.
روش دیگر جدا کردن ناخالصیها از آهن
در روش دیگری که از همین اصول شیمیایی برای جدا کردن ناخالصیها از آهن استفاده میشود، آهن مذاب را همراه آهن قراضه و کمکذوب در کورهای بشکه مانند که گنجایش 300 تن بار را دارد، میریزند. جریان شدیدی از اکسیژن خالص را با سرعت مافوق صوت بر سطح فلز مذاب هدایت میکنند و با کج کردن و چرخاندن بشکه ، همواره سطح تازهای از فلز مذاب را در معرض اکسیژن قرار میدهند.اکسایش ناخالصیها بسیار سریع صورت میگیرد و وقتی محصولات گازی مانند CO2 رها میشوند، توده مذاب را به هم میزنند، بطوری که آهن ته ظرف ، رو میآید. دمای توده مذاب ، بی آنکه از گرمای خارجی استفاده شود، تقریبا به دمای جوش آهن میرسد و در چنین دمایی ، واکنشها فوقالعاده سریع بوده ، تمامی این فرایند ، در مدت یک ساعت یا کمتر کامل میشود و معمولا محصولی یکنواخت و دارای کیفیت خوب بدست میآید.
تبدیل آهن به فولاد
آهن مذاب تصفیه شده را با افزودن مقدار معین کربن و فلزهای آلیاژ دهنده مثل وانادیم ، کروم ، تیتانیم ، منگنز و نیکل به فولاد تبدیل میکنند. فولادهای ویژه ممکن است مولیبدن ، تنگستن یا فلزهای دیگر داشته باشند. این نوع فولادها برای مصارف خاصی مورد استفاده قرار میگیرند. در دمای زیاد ، آهن و کربن با یکدیگر متحد شده ، کربید آهن (Fe3C) به نام «سمانتیت» تشکیل میدهند. این واکنش ، برگشتپذیر و گرماگیر است:Fe3C <------- گرما + 3Fe + C
هرگاه فولادی که دارای سمانتیت است، بهکندی سرد شود، تعادل فوق به سمت تشکیل آهن و کربن ، جابجا شده ، کربن بهصورت پولکهای گرافیت جدا میشود و به فلز ، رنگ خاکستری میدهد. برعکس ، اگر فولاد به سرعت سرد شود، کربن عمدتا به شکل سمانتیت که رنگ روشنی دارد، باقی میماند. تجزیه سمانتیت در دمای معمولی به اندازهای کند است که عملا انجام نمیگیرد.
فولادی که دارای سمانتیت است، از فولادی که دارای گرافیت است، سختتر و خیلی شکنندهتر است. در هر یک از این دو نوع فولاد ، مقدار کربن را میتوان در محدوده نسبتا وسیعی تنظیم کرد. همچنین ، میتوان مقدار کل کربن را در قسمتهای مختلف یک قطعه فولاد تغییر داد و خواص آن را بهتر کرد. مثلا بلبرینگ از فولاد متوسط ساخته شده است تا سختی و استحکام داشته باشد و لیکن سطح آن را در بستری از کربن حرارت میدهند تا لایه نازکی از سمانتیت روی آن تشکیل گردد و بر سختی آن افزوده شود.
تهیه فولاد
روشهای تهیه فولاد
از سه روش برای تهیه فولاد استفاده میشود:روش بسمه
در این روش ، ناخالصیهای موجود در چدن مذاب را به کمک سوزاندن در اکسیژن کاهش داده ، آن را به فولاد تبدیل میکنند. پوشش جدار داخلی کوره بسمه از سیلیس یا اکسید منیزیم و گنجایش آن در حدود 15 تن است. نحوه کار کوره به این ترتیب است که جریانی از هوا را به داخل چدن مذاب هدایت میکنند تا ناخالصیهای کربن و گوگرد بهصورت گازهای SO2 و CO2 از محیط خارج شود و ناخالصیهای فسفر و سیلیس موجود در چدن مذاب در واکنش با اکسیژن موجود در هوا بهصورت اکسیدهای غیر فرار P4O10 و SiO2 جذب جدارهای داخلی کوره شوند و به ترکیبات زودگداز Mg3(PO4)2 و MgSiO3 تبدیل و سپس بهصورت سرباره خارج شوند.سرعت عمل این روش زیاد است، به همین دلیل کنترل مقدار اکسیژن مورد نیاز برای حذف دلخواه ناخالصیهای چدن غیرممکن است و در نتیجه فولاد با کیفیت مطلوب و دلخواه را نمیتوان به این روش بدست آورد.
روش کوره باز (یا روش مارتن)
در این روش برای جدا کردن ناخالصیهای موجود در چدن ، از اکسیژن موجود در زنگ آهن یا اکسید آهن به جای اکسیژن موجود در هوا در روش بسمه (به منظور سوزاندن ناخالصیهایی مانند کربن ، گوگرد و غیره) استفاده میشود. برای این منظور از کوره باز استفاده میشود که پوشش جدار داخلی آن از MgO و CaO تشکیل شده است و گنجایش آن نیز بین 50 تا 150 تن چدن مذاب است. حرارت لازم برای گرم کردن کوره از گازهای خروجی کوره و یا مواد نفتی تأمین میشود. برای تکمیل عمل اکسیداسیون ، هوای گرم نیز به چدن مذاب دمیده میشود. زمان عملکرد این کوره طولانیتر از روش بسمه است. از این نظر میتوان با دقت بیشتری عمل حذف ناخالصیها را کنترل کرد و در نتیجه محصول مرغوبتری بدست آورد.روش الکتریکی
از این روش در تهیه فولادهای ویژهای که برای مصارف علمی و صنعتی بسیار دقیق لازم است، استفاده میشود که در کوره الکتریکی با الکترودهای گرافیت صورت میگیرد. از ویژگیهای این روش این است که احتیاج به ماده سوختنی و اکسیژن ندارد و دما را میتوان نسبت به دو روش قبلی ، بالاتر برد.این روش برای تصفیه مجدد فولادی که از روش بسمه و یا روش کوره باز بدست آمده است، به منظور تبدیل آن به محصول مرغوبتر ، بکار میرود. برای این کار مقدار محاسبه شده ای از زنگ آهن را به فولاد بدست آمده از روشهای دیگر ، در کوره الکتریکی اضافه کرده و حرارت میدهند. در این روش ، برای جذب و حذف گوگرد موجود در فولاد مقدار محاسبه شدهای اکسید کلسیم و برای جذب اکسیژن محلول در فولاد مقدار محاسبه شده ای آلیاژ فروسیلیسیم (آلیاژ آهن و سیلیسیم) اضافه میکنند.
انواع فولاد و کاربرد آنها
از نظر محتوای کربن ، فولاد به سه نوع تقسیم میشود:فولاد نرم
این نوع فولاد کمتر از 0,2 درصد کربن دارد و بیشتر در تهیه پیچ و مهره ، سیم خاردار و چرخ دنده ساعت و ... بکار میرود.فولاد متوسط
این فولاد بین 0,2 تا 0,6 درصد کربن دارد و برای تهیه ریل و راه آهن و مصالح ساختمانی مانند تیرآهن مصرف میشود.فولاد سخت
فولاد سخت بین 0,6 تا 1,6 درصد کربن دارد که قابل آب دادن است و برای تهیه فنرهای فولادی ، تیر ، وسایل جراحی ، مته و ... بکار میرود.چدن
چدن (Cast iron)، آلیاژی از آهن- کربن- سیلیسیم (Fe-C-Si) است که همواره محتوی عناصری در حد جزئی (کمتر از 1/0 درصد) و غالبا عناصر آلیاژی (بیشتر از 1/0 درصد) بوده و به صورت حالت ریختگی یا پس از عملیات حرارتی به کار برده میشود.چدن خام
آهن، اغلب از کانه های اکسید یا کربنات که گوگرد، آرسنیک و غیره از آنها زدوده شده باشد با برشته کردن در هوا، و کاهش با کربن تهیه میشود. کانه آهن با کک و کربنات کلسیم آمیخته شده و در یک کوره بلند که دمای بیشینه آن 1300 درجه سانتیگراد است. گرم میشود ناخالصیهای عمده اسیدی به کمک سرباره (کلسیم سیلیکات، آلومینات و غیره) خنثی میشود و توده فلزات مذاب به صورت چدن خام به بیرون جریان مییابد چدن خام شامل 2 الی 4 درصد کربن و اندکی گوگرد، فسفر و سیلسیم است. چدن مذاب را به صورت خام یا پس از افزودن فلزهای آلیاژ دهنده، برای بهبود خواص چدن، در قالبهایی از ماسه یا فلز و بر حسب نوع مصرف، آنها را به صورت اشکال مختلف در میآورند.آلیاژهای چدن
فلزهای آلیاژ دهنده برای بهبود کیفیت چدن برای مصارف ویژه به آن افزوده میشوند. آلیاژهای چدن در کارهای مهندسی که در آنها چدن معمولی ناپایدار است به کار میروند و حتی ممکن است در مواردی نیز، مثلا ساخت میل لنگ، جانشین فولاد شوند. در هر حال، با دارا بودن مزایایی از قبیل از قیمت تمام شده تولید پایین توام با قابلیت ریخته گری، استحکام، قابلیت ماشین کاری، سختی، مقاومت در برابر سایش، مقاوم در برابر خوردگی، انتقال حرارت و جذب ارتعاش در این آلیاژ آن را از سایر آلیاژهای ریختگی آهنی متمایز ساخته است.انواع ساختارهای زمینه چدن
اساس خواص مکانیکی چدن به زمینه آن بستگی دارد. به همین دلیل است چدن ها را با عبارت ساختار زمینه آنها برای مثال انواع پرلیتی یا فریتی توصیف میکنند. مهمترین ساختار زمینه چدن عبارتند از:فریت
فریت محلول جامد Fe-C است که به طور قابل ملاحظهای Si و مقادیر کمتری Ni ,Cu ,Mn در آن حل شدهاند. فریت نسبتا نرم، چکش خوار، استحکام کم، مقاومت به سایش ضعیف، شکست خوب، ضریب هدایت گرمایی نسبتا خوب و قابلیت ماشینکاری خوبی است. یک زمینه فریتی را میتوان به طور ریختگی تولید کرد اما اغلب با عملیات حرارتی باز پخت (تابکاری) میتوان به آن دست یافت.پرلیت
مخلوطی از فریت و سمانتیت Fe<sub>3</sub>C است که توسط واکنش یوتکتیک از استینیت تشکیل شده و نام پرلیت از ظاهر صدف گونهاش مشتق شده است. پرلیت نسبتا سخت و از چقرمگی کمتری برخوردار بوده و ضریب هدایت گرمایی کم و در ضمن از ماشینکاری خوبی برخوردار است. وقتی فاصله بین دانههای پرلیت در زمینه کم میشود خواص مکانیکی افزایش مییابد مقدار کربن پرلیت در فولادهای غیر آلیاژی 0.8 % است در حالی که در چدنها بسته به ترکیب چدن و سرعت خنک شدن متغیر بوده و حتی می تواند کمتر از 0.5% در چدن های پرسیلسیم باشد.فریت- پرلیت
ساختار مخلوطی است که غالبا برای رسیدن به خصوصیاتی بینابینی از آنچه که در فوق شرح داده شده به کار گرفته میشود.بینیت
این ساختار میتواند به صورت ریختگی با افزودن عناصر آلیاژی Mo و Ni به مقادیر معین تولید شد. در ضمن جهت اطمینان بیشتر میتوان توسط عملیات حرارتی آستمپر نیز به این ساختار رسید. این آلیاژ، با توجه به صرفه اقتصادی اخیرا توانستهاند نقش موثری بویژه در مهندسی خودرو، قطعات دنده ها، قطعات انتقال نیرو داشته باشند. مزایای چدن های گرافیت کروی آسمتپر عبارتند از: استحکام کششی بالا توام با چقرمگی، انعطاف پذیری و استحکام خوب، مقاومت به سایش و خراش، ظرفیت بالای جذب صدا و کارکرد، خواص ریخته کری خوب، فرم پذیری نزدیک به شکل نهایی حتی در شکل های خیلی پیچیده، قابلیت ماشینکاری خوب در حالت ریخته و حدود 10% صرفه جویی در وزن در مقایسه با فولاد.آستنیت
برای پایدار نگاه داشتن این فاز در طول عمل خنک شدن یک عنصر آلیاژی با مقدار زیاد و معینی لازمست. چدن گرافیت ورقه ای و گرفیت کروی آلیاژی (نیکل- سخت) چدن هایی با زمینه آستنیتی و دارای خواص عالی حرارتی مقاومت به خوردگی و نیز غیر مغناطیسی هستند. این زمینه میتواند خصوصیات چقرمگی خوب، مقاومت به خزش، تنش پارگی تا دمای 800 درجه سانتیگراد و یک محدوده گسترده ای از انبساط حرارتی که تابع از Si موجود در چدن است را نشان دهد.انواع چدن
چدن ها به دو گروه اصلی تقسیم بندی میشوند، آلیاژهایی برای مقاصد عمومی که موارد استعمال آنها در کاربردهای عمده مهندسی است و آلیاژهای با منظور و مقاصد ویژه از جمله چدن های سفید و آلیاژهای که برای مقاومت در برابر سایش، خوردگی و مقاوم در برابر حرارت بالا مورد استفاده قرار میگیرند.چدن های عمومی (معمولی):
این چدن ها جزو بزرگترین گروه آلیاژهای ریختگی بوده و بر اساس شکل گرافیت به انواع زیر تقسیم بندی میشوند:o چدن گرافیت لایه ای یا چدن خاکستری ورقهای
o چدن گرافیت مالیبل یا چدن چکشخوار
o چدن گرافیت کروی یا چدن نشکن
o چدن گرافیت فشرده یا کرمی شکل
چدن های سفید و آلیاژی مخصوص:
این چدن ها با آلیاژهای چدنی معمولی فرق میکنند. میزان عنصر آلیاژی در آنها بیش از 3% بوده و لذا آن را نمیتوان توسط مواد افزودنی به پاتیل اضافه کرده و به یک ترکیب پایه استانداردی رسید. این چدن های آلیاژهای به آلیاژهای عاری از گرافیت و گرافیتدار تقسیم بندی میشوند و به صورت های مقاوم به خوردگی، دمای بالا، سایش و فرسایش میباشند.
o چدن های بدون گرافیت:
چدن سفید پرلیتی: مقاوم به سایش
چدن سفید مارتنزیتی (نیکل-سخت): مقاوم سایش
چدن پر کرم (33-17 %Cr): مقاوم به خوردگی، سایش و حرارت
o چدن های دارای گرافیت:
چدن سوزنی: استحکام بالا و مقاوم به سایش
آستنیتی: شامل دو نوع نیکروسیلال یعنی نیکل سیلسیم بالا و نیکل مقاوم (Ni-resist) و هر دو مقاوم به حرارت و خوردگی
فریتی: شامل دو نوع چدن، پر سیلسیم (15%) مقاوم در برابر خوردگی و چدن 5%سیلسیم در سیلال مقاوم در برابر حرارت
برخی از کاربردهای چدنها:
• در تولید قطعات ریختگی تحت فشار از جمله شیر فلکه ها، بدنه های پمپ قطعات ماشین آلات که در معرض شوک و خستگی هستند، میل لنگ ها، چرخ دنده ها، غلتک ها، تجهیزات فرایند شیمیایی، مخازن ریختگی تحت فشار و...
• برای خودرو و صنایع وابسته به آن مثلا در ساخت مفصل های فرمان، دیسک ترمزها، بازوها، میل لنگها و چرخ دندهها، صفحه کلاچها و...
• در راه آهن، کشتیرانی و خدمات سنگین و دیگر جاهایی که نیاز به مقاومت در برابر شوک است مثلا در تجهیزات الکتریکی کشتیها، بدنه موتور، پمپ ها، بست ها و غیره
• قطعات غیر فشاری برای کاربردهای درجه حرارت بالا برای مثال در ساخت قطعات و جعبه های درگیر با آتش، میله های شبکه، قطعات کورهها، قالبهای شمش، قالبهای شیشه، بوتههای ذوب فلز.
• اگر چدن های غیر آلیاژی به طور کلی مقاوم به خوردگی بویژه در محیط های قلیایی هستند، چدنهای نیکل مقاوم و نیکروسیلال و نیکل و کروم بالا به صورت برجستهای مقاوم به خوردگی در محیط هایی مناسب و مختص به خودشان هستند. مهمترین کاربرد این چدنها در پمپهای دندهای حمل اسید سولفوریک، پمپها و شیرهایی که در آب دریا مصرف میشوند، قطعات مورد استفاده در سیستم های بخار و جابجایی محلول های آمونیاکی، سود و نیز برای پمپاژ و جابجایی نفت خام اسیدی در صنایع نفت هستند.
انواع چدن
طبفهبندی چدنها
چدن ها به دو گروه اصلی طبقهبندی میشوند، آلیاژهایی برای مقاصد عمومی که موارد استعمال آنها در کاربردهای عمده مهندسی است و آلیاژهای با منظور و مقاصد ویژه از جمله چدنهای سفید و آلیاژی که برای مقاومت در برابر سایش ، خوردگی و مقاوم در برابر حرارت بالا مورد استفاده قرار میگیرند.چدن های معمولی (عمومی)
این چدن ها چزو بزرگترین گروه آلیاژهای ریختگی بوده و براساس شکل گرافیت به انواع زیر تقسیم میشوند:• چدن های خاکستری ورقه ای یا لایه ای: چدن های خاکستری جزو مهمترین چدن های مهندسی هستند که کاربردی زیاد دارند نام این چدن ها از خصوصیات رنگ خاکستری سطح مقطع شکست آن و شکل گرافیت مشتق میشود.خواص چدن های خاکستری به اندازه ، مقدار و نحوه توزیع گرافیتها و ساختار زمینه بستگی دارد. خود اینها نیز به کربن و سیلیسیم (C.E.V=%C+%⅓Si+%⅓P) و همچنین روی مقادیر جزئی عناصر ، افزودنیهای آلیاژی ، متغیرهای فرایندی مانند، روش ذوب ، عمل جوانه زنی و سرعت خنک شدن بستگی پیدا میکنند. اما به طور کلی این چدن ها ضریب هدایت گرمایی بالایی داشته، مدول الاستیستیه و قابلیت تحمل شوکهای حرارتی کمی دارند و قطعات تولیدی از این چدن ها به سهولت ماشینکاری و سطح تمام شده ماشینکاری آنها نیز مقاوم در برابر سایش از نوع لغزشی است. این خواص آنها را برای ریختگی هایی که در معرض تنشهای حرارتی محلی با تکرار تنشها هستند، مناسب میسازد. افزایش میزان فریت در ساختار باعث استحکام مکانیکی خواهد شد. این نوع حساس بودن به مقاطع نازک و کلفت در قطعات چدنی بدنه موتورها مشاهده می شود دیواره نازک و لاغر سیلندر دارای زمینهای فریتی و قسمت ضخیم نشیمنگاه یا تاقانها زمینهای با پرلیت زیاد را پیدا میکند. همچنین در ساخت ماشین آلات عمومی ، کمپرسورهای سبک و سنگین ، قالبها ، میل لنگها ، شیر فلکههاو اتصالات لولهها و غیره از چدنهای خاکستری استفاده میشود.
• چدن های مالیبل یا چکش خوار: چدن های چکش خوار با دیگر چدن ها به واسطه ریخته گری آنها نخست به صورت چدن سفید فرق میکنند. ساختار آنها مرکب از کاربیدهای شبه پایدار در یک زمینهای پرلیتی است بازپخت در دمای بالا که توسط عملیات حرارتی مناسب دنبال میشود باعث تولید ساختاری نهایی از توده متراکم خوشههای گرافیت در زمینه فریتی یا پرلیتی بسته به ترکیب شیمیایی و عملیات حرارتی میشود. ترکیب به کار برده شده براساس نیازهای اقتصادی ، نحوه باز پخت خوب و امکان جذب و امکان تولید ریختهگری انتخاب میشود. مثلا بالا رفتن Si بازپخت را جلو انداخته و موجب عملیات حرارتی خوب و سریعی با سیلکی کوتاه میشود و در ضمن مقاومت مکانیکی را نیز اصلاح مینماید. تاثیر عناصر به مقدار بسیار کم در این چدن ها دست آورد دیگری در این زمینه هستند. Te و Bi تشکیل چدن سفید در حالت انجماد را ترقی داده، B و Al موجب اصلاح قابلیت بازپخت و توام با افزایش تعداد خوشههای گرافیت میشود میزان Mn موجود و نسبت Mn/S برای آسان کردن عمل بازپخت میبایستی کنترل گردد. عناصری از جمله Cu و Ni و Mo را ممکن است برای بدست آوردن مقاومت بالاتر یا افزایش مقاومت به سایش و خوردگی به چدن افزود. دلیل اساسی برای انتخاب چدن های چکش خوار قیمت تمام شده پایین و ماشینکاری راحت و ساده آنهاست. کاربردهای آنها در قطعات اتومبیل قطعات کشاورزی ، اتصالات لوله ها ، اتصالات الکتریکی و قطعات مورد استفاده در صنایع معدنی است.
• چدن های گرافیت کروی یا نشکن: این چدن در سال 1948 در فیلادلفیای آمریکا در کنگره جامعه ریخته گران معرفی شد. توسعه سریع آن در طی دهه 1950 آغاز و مصرف آن در طی سال های 1960 روبه افزایش نهاده و تولید آن با وجود افت در تولید چدن ها پایین نیامده است. شاخصی از ترکیب شیمیایی این چدن به صورت کربن 3.7% ، سیلیسیم 2.5% ، منگنز0.3% ، گوگرد 0.01% ، فسفر 0.01% و منیزیم 0.04% است. وجود منیزیم این چدن را از چدن خاکستری متمایز میسازد. برای تولید چدن گرافیت کروی از منیزیم و سریم استفاده میشود که از نظر اقتصادی منیزیم مناسب و قابل قبول است. جهت اصلاح و بازیابی بهتر منیزیم برخی از اضافه شوندههایی از عناصر دیگر با آن آلیاژ میشوند و این باعث کاهش مصرف منیزیم و تعدیل کننده آن است. منیزیم ، اکسیژن و گوگرد زدا است. نتیجتا منیزیم وقتی خواهد توانست شکل گرافیتها را به سمت کروی شدن هدایت کند که میزان اکسیژن و گوگرد کم باشند. اکسیژنزداهایی مثل کربن و سیلیسیم موجود در چدن مایع این اطمینان را میدهند که باعث کاهش اکسیژن شوند ولی فرآیند گوگردزدایی اغلب برای پایین آوردن مقدار گوگرد لازم است. از کاربردهای این چدن ها در خودروسازی و صنایع وابسته به آن مثلا در تولید مفصلهای فرمان و دیسک ترمزها ، در قطعات تحت فشار در درجه حرارت های بالا مثل شیر فلکهها و اتصالات برای طرحهای بخار و شیمیایی غلتکهای خشککن نورد کاغذ ، در تجهیزات الکتریکی کشتیها ، بدنه موتور ، پمپها و غیره است.
• چدن های گرافیت فشرده یا کرمی شکل: این چدن شبیه خاکستری است با این تفاوت که شکل گرافیتها به صورت کروی کاذب ، گرافیت تکهای با درجه بالا و از نظر جنس در ردیف نیمه نشکن قرار دارد. میتوان گفت یک نوع چدنی با گرافیت کروی است که کرههای گرافیت کامل نشدهاند یا یک نوع چدن گرافیت لایهای است که نوک گرافیت گرد شده و به صورت کرمی شکل درآمدهاند. ایت چدن ها اخیرا از نظر تجارتی جای خود را در محدوده خواص مکانیکی بین چدن های نشکن و خاکستری باز کرده است.
ترکیب آلیاژ موجود تجارتی که برای تولید چدن گرافیت فشرده استفاده میشود عبارت است از: Mg%4-5 ،Ti%8.5-10.5 ، Ca% 4-5.5 ، Al%1-1.5 ، Ce %0.2-0.5 ،Si%48-52 و بقیه Fe. چدن گرافیت فشرده در مقایسه با چدن خاکستری از مقاومت به کشش ، صلبیت و انعطافپذیری ، عمر خستگی ، مقاومت به ضربه و خواص مقاومت در دمای بالا و برتری بازمینهای یکسان برخوردار است و از نظر قابلیت ماشینکاری ، هدایت حرارتی نسبت به چدن های کروی بهتر هستند. از نظر مقاومت به شکاف و ترک خوردگی برتر از سایر چدن ها است. در هر حال ترکیبی از خواص مکانیکی و فیزیکی مناسب ، این چدن ها را به عنوان انتخاب ایده آلی جهت موارد استعمال گوناگون مطرح میسازد. مقاومت بالا در مقابل ترکخوردگی آنها را برای قالبهای شمشریزی مناسب میسازد. نشان دادن خصوصیاتی مطلوب در دماهای بالا در این چدن ها باعث کاربرد آنها برای قطعاتی از جمله سر سیلندرها ، منیفلدهای دود ، دیسکهای ترمز ، دیسکها و رینگهای پیستون شده است.
چدن های سفید و آلیاژی مخصوص
کربن چدن سفید به صورت بلور سمانتیت (کربید آهن ، Fe3C) میباشد که از سرد کردن سریع مذاب حاصل میشود و این چدن ها به آلیاژهای عاری از گرافیت و گرافیتدار تقسیم میشوند و به صورتهای مقاوم به خوردگی ، دمای بالا، سایش و فرسایش میباشند.• چدن های بدون گرافیت: شامل سه نوع زیر می باشد:
o چدن سفید پرلیتی: ساختار این چدنها از کاربیدهای یکنواخت برجسته و توپر M3C در یک زمینه پرلیتی تشکیل شده است. این چدنها مقاوم در برابر سایش هستند و هنوز هم کاربرد داشته ولی بینهایت شکننده هستند لذا توسط آلیاژهای پرطاقت دیگری از چدن های سفید آلیاژی جایگزین گشتهاند.
o چدن سفید مارتنزیتی (نیکل- سخت): نخستین چدن های آلیاژی که توسعه یافتند آلیاژهای نیکل- سخت بودند. این آلیاژها به طور نسبی قیمت تمام شده کمتری داشته و ذوب آنها در کوره کوپل تهیه شده و چدن های سفید مارتنزیتی دارای نیکل هستند. Ni به عنوان افزایش قابلیت سختی پذیری برای اطمینان از استحاله آستنیتی به مارتنزیتی در طی مرحله عملیات حرارتی به آن افزوده میشود. این جدن ها حاوی Cr نیز به دلیل افزایش سختی کاربید یوتکتیک هستند. این چدنها دارای یک ساختار یوتکتیکی تقریبا نیمه منظمی با کاربیدهای یکنواخت برجسته و یکپاره M3C هستند که بیشترین فاز را در یوتکتیک دارند و این چدنها مقاوم در برابر سایش هستند.
o چدن سفید پرکرم: چدن های سفید با Cr زیاد ترکیبی از خصوصیات مقاومت در برابر خوردگی ، حرارت و سایش را دارا هستند این چدنها مقاومت عالی به رشد و اکسیداسیون در دمای بالا داشته و از نظر قیمت نیز از فولادهای ضد زنگ ارزان تر بوده و درجاهایی که در معرض ضربه و یا بازهای اعمالی زیادی نیستند به کار برده میشوند این چدنها در سه طبقه زیر قرار میگیرند:
1. چدنهای مارتنزیتی با Cr %12-28
2. چدنهای فریتی با 34-30% Cr
3. چدنهای آستنیتی با 30-15%Cr و 15-10% Niبرای پایداری زمینه آستنیتی در دمای پایین.
طبقه بندی این چدنها براساس دمای کار ، عمر کارکرد در تنش های اعمالی و عوامل اقتصادی است. کاربرد این چدنها در لولههای رکوپراتو ، میله ، سینی ، جعبه در کورههای زینتر و قطعات مختلف کورهها، قالبهای ساخت بطری شیشه و کاسه نمدهای فلکهها است.
• چدن های گرافیت دار:
o چدن های آستنیتی: شامل دو نوع (نیکل- مقاوم) و نیکروسیلال Ni-Si ، که هر دو نوع ترکیبی از خصوصیات مقاومت در برابر حرارت و خوردگی را دارا هستند. اگرچه چدن های غیر آلیاژی به طور کلی مقاوم به خوردگی بویژه در محیط های قلیایی هستند، این چدنها به صورت برجستهای مقاوم به خوردگی در محیط هایی مناسب و مختص خودشان هستند. چدن های نیکل مقاوم آستنیتی با گرافیت لایهای که اخیرا عرضه شدهاند از خواص مکانیکی برتری برخوردار بوده ولی خیلی گران هستند. غلظت نیکل و کرم در آنها بسته به طبیعت محیط خورنده شان تغییر میکند. مهمترین کاربردها شامل پمپهای دندهای حمل اسید سولفوریک، پمپ خلا و شیرهایی که در آب دریا مصرف میشوند، قطعات مورد استفاده در سیستمهای بخار و جابهجایی محلولهای آمونیاکی، سود و نیز برای پمپاژ و جابجایی نفت خام اسیدی در صنایع نفت هستند.
o چدن های فریتی: شامل دو نوع زیر میباشد: چدن سفید 5% سیلیسیم در سیلال که مقاوم در برابر حرارت میباشد و نوع دیگر چدن پرسیلیسیم (15%) که از مقاومتی عالی به خوردگی در محیطهای اسیدی مثل اسید نیتریک و سولفوریک در تمام دماها و همه غلظتها برخوردارند. اما برخلاف چدن های نیکل- مقاوم ، عیب آن ، ترد بودن است که تنها با سنگزنی میتوان ماشینکاری نمود. مقاومت به خوردگی آنها در برابر اسیدهای هیدروکلریک و هیدروفلوریک ضعیف است. جهت مقاوم سازی به خوردگی در اسید هیدروکلریک میتوان با افزودن Si تا 18-16% ، افزودن Cr%5-3 یا Mo %4-3 به آلیاژ پایه ، اقدام نمود.
o چدن های سوزنی: در این چدنها Al به طور متناسبی جانشین Si در غلظت های کم میگردد. چدن های آلیاژهای Alدار تجارتی در دو طبقه بندی یکی آلیاژهای تا Al %6 و دیگری Al%18-25 قرار میگیرند. Al پتانسیل گرافیتهشدگی را در هر دوی محدودههای ترکیبی ذکر شده حفظ کرده و لذا پس از انجماد چدن خاکستری بدست میآید. این آلیاژ به صورت چدنهای گرافیت لایهای ، فشرده و کروی تولید میشوند. مزایای ملاحظه شده شامل استحکام به کشش بالا ، شوک حرارتی و تمایل به گرافیته شدن و سفیدی کم میباشند که قادر میسازند قطعات ریختگی با مقاطع نازکتر را تولید کرد. چدن های با Al کم مقاومت خوبی به پوسته پوسته شدن نشان داده و قابلیت ماشینکاری مناسبی را نیز دارا هستند. محل های پیشنهادی جهت کاربرد آنها منیفلدهای دود ، بدنه توربوشارژرها ، روتورهای دیسک ترمز، کاسه ترمزها ، برش سیلندرها، میل بادامکها و رینگهای پیستون هستند. وجود Al در کنار Si در این نوع چدنها باعث ارائه خواص مکانیکی خوب توام با مقاومت به پوستهشدگی در دماهای بالا میشود. این آلیاژها مستعد به تخلخلهای گازی هستند. آلومینیوم حل شده در مذاب می توان با رطوبت یا هیدروکربنهای موجود در قالب ترکیب شده و هیدروژن آزاد تولید کند. این هیدروژن آزاد قابل حل در فلز مذاب بوده و باعث به وجود آوردن مکهای سوزنی شکل در انجماد میشود.
خوردگی فلزات
خوردگی ، ( Corrosion ) ، اثر تخریبی محیط بر فلزات و آلیاژها میباشد. خوردگی ، پدیدهای خودبهخودی است و همه مردم در زندگی روزمره خود ، از بدو پیدایش فلزات با آن روبرو هستند. در اثر پدیده خودبهخودی ، فلز از درجه اکسیداسیون صفر تبدیل به گونهای با درجه اکسیداسیون بالا میشود.تخریب فلزات با عوامل غیر خوردگی
فلزات در اثر اصطکاک ، سایش و نیروهای وارده دچار تخریب میشوند که تحت عنوان خوردگی مورد نظر ما نیست.فرایند خودبهخودی و فرایند غیرخودبهخودی
خوردگی یک فرایند خودبخودی است، یعنی به زبان ترمودینامیکی در جهتی پیش میرود که به حالت پایدار برسد. البته M+n میتواند به حالتهای مختلف گونههای فلزی با اجزای مختلف ظاهر شود. اگر آهن را در اتمسفر هوا قرار دهیم، زنگ میزند که یک نوع خوردگی و پدیدهای خودبهخودی است. انواع مواد هیدروکسیدی و اکسیدی نیز میتوانند محصولات جامد خوردگی باشند که همگی گونه فلزی هستند. پس در اثر خوردگی فلزات در یک محیط که پدیدهای خودبهخودی است، اشکال مختلف آن ظاهر میشود.بندرت میتوان فلز را بصورت فلزی و عنصری در محیط پیدا کرد و اغلب بصورت ترکیب در کانیها و بصورت کلریدها و سولفیدها و غیره یافت میشوند و ما آنها را بازیابی میکنیم. به عبارت دیگر ، با استفاده از روشهای مختلف ، فلزات را از آن ترکیبات خارج میکنند. یکی از این روشها ، روش احیای فلزات است. بعنوان مثال ، برای بازیابی مس از ترکیبات آن ، فلز را بصورت سولفات مس از ترکیبات آن خارج میکنیم یا اینکه آلومینیوم موجود در طبیعت را با روشهای شیمیایی تبدیل به اکسید آلومینیوم میکنند و سپس با روشهای الکترولیز میتوانند آن را احیا کنند.
برای تمام این روشها ، نیاز به صرف انرژی است که یک روش و فرایند غیرخودبهخودی است و یک فرایند غیرخودبهخودی هزینه و مواد ویژهای نیاز دارد. از طرف دیگر ، هر فرایند غیر خودبهخودی درصدد است که به حالت اولیه خود بازگردد، چرا که بازگشت به حالت اولیه یک مسیر خودبهخودی است. پس فلزات استخراج شده میل دارند به ذات اصلی خود باز گردند.
در جامعه منابع فلزات محدود است و مسیر برگشت طوری نیست که دوباره آنها را بازگرداند. وقتی فلزی را در اسید حل میکنیم و یا در و پنجره دچار خوردگی میشوند، دیگر قابل بازیابی نیستند. پس خوردگی یک پدیده مضر و ضربه زننده به اقتصاد است.
جنبههای اقتصادی فرایند خوردگی
برآوردی که در مورد ضررهای خوردگی انجام گرفته، نشان میدهد سالانه هزینه تحمیل شده از سوی خوردگی ، بالغ بر 5 میلیارد دلار است. بیشترین ضررهای خوردگی ، هزینههایی است که برای جلوگیری از خوردگی تحمیل میشود.پوششهای رنگها و جلاها
سادهترین راه مبارزه با خوردگی ، اعمال یک لایه رنگ است. با استفاده از رنگها بصورت آستر و رویه ، میتوان ارتباط فلزات را با محیط تا اندازهای قطع کرد و در نتیجه موجب محافظت تاسیسات فلزی شد. به روشهای سادهای میتوان رنگها را بروی فلزات ثابت کرد که میتوان روش پاششی را نام برد. به کمک روشهای رنگدهی ، میتوان ضخامت معینی از رنگها را روی تاسیسات فلزی قرار داد.آخرین پدیده در صنایع رنگ سازی ساخت رنگهای الکتروستاتیک است که به میدان الکتریکی پاسخ میدهند و به این ترتیب میتوان از پراکندگی و تلف شدن رنگ جلوگیری کرد.
پوششهای فسفاتی و کروماتی
این پوششها که پوششهای تبدیلی نامیده میشوند، پوششهایی هستند که از خود فلز ایجاد میشوند. فسفاتها و کروماتها نامحلولاند. با استفاده از محلولهای معینی مثل اسید سولفوریک با مقدار معینی از نمکهای فسفات ، قسمت سطحی قطعات فلزی را تبدیل به فسفات یا کرومات آن فلز میکنند و در نتیجه ، به سطح قطعه فلز چسبیده و بعنوان پوششهای محافظ در محیطهای خنثی میتوانند کارایی داشته باشند.این پوششها بیشتر به این دلیل فراهم میشوند که از روی آنها بتوان پوششهای رنگ را بر روی قطعات فلزی بکار برد. پس پوششهای فسفاتی ، کروماتی ، بعنوان آستر نیز در قطعات صنعتی میتوانند عمل کنند؛ چرا که وجود این پوشش ، ارتباط رنگ با قطعه را محکمتر میسازد. رنگ کم و بیش دارای تحلخل است و اگر خوب فراهم نشود، نمیتواند از خوردگی جلوگیری کند.
پوششهای اکسید فلزات
اکسید برخی فلزات بر روی خود فلزات ، از خوردگی جلوگیری میکند. بعنوان مثال ، میتوان تحت عوامل کنترل شده ، لایهای از اکسید آلومینیوم بر روی آلومینیوم نشاند. اکسید آلومینیوم رنگ خوبی دارد و اکسید آن به سطح فلز میچسبد و باعث میشود که اتمسفر به آن اثر نکرده و مقاومت خوبی در مقابل خوردگی داشته باشد. همچنین اکسید آلومینیوم رنگپذیر است و میتوان با الکترولیز و غوطهوری ، آن را رنگ کرد. اکسید آلومینیوم دارای تخلخل و حفرههای شش وجهی است که با الکترولیز ، رنگ در این حفرهها قرار میگیرد.همچنین با پدیده الکترولیز ، آهن را به اکسید آهن سیاه رنگ (البته بصورت کنترل شده) تبدیل میکنند که مقاوم در برابر خوردگی است که به آن "سیاهکاری آهن یا فولاد" میگویند که در قطعات یدکی ماشین دیده میشود.
پوششهای گالوانیزه
گالوانیزه کردن (Galvanizing) ، پوشش دادن آهن و فولاد با روی است. گالوانیزه ، بطرق مختلف انجام میگیرد که یکی از این طرق ، آبکاری با برق است. در آبکاری با برق ، قطعهای که میخواهیم گالوانیزه کنیم، کاتد الکترولیز را تشکیل میدهد و فلز روی در آند قرار میگیرد. یکی دیگر از روشهای گالوانیزه ، استفاده از فلز مذاب یا روی مذاب است. روی دارای نقطه ذوب پایینی است.در گالوانیزه با روی مذاب آن را بصورت مذاب در حمام مورد استفاده قرار میدهند و با استفاده از غوطهور سازی فلز در روی مذاب ، لایهای از روی در سطح فلز تشکیل میشود که به این پدیده ، غوطهوری داغ (Hot dip galvanizing) میگویند. لولههای گالوانیزه در ساخت قطعات مختلف ، در لوله کشی منازل و آبرسانی و ... مورد استفاده قرار میگیرند.
پوششهای قلع
قلع از فلزاتی است که ذاتا براحتی اکسید میشود و از طریق ایجاد اکسید در مقابل اتمسفر مقاوم میشود و در محیطهای بسیار خورنده مثل اسیدها و نمکها و ... بخوبی پایداری میکند. به همین دلیل در موارد حساس که خوردگی قابل کنترل نیست، از قطعات قلع یا پوششهای قلع استفاده میشود. مصرف زیاد این نوع پوششها ، در صنعت کنسروسازی میباشد که بر روی ظروف آهنی این پوششها را قرار میدهند.پوششهای کادمیم
این پوششها بر روی فولاد از طریق آبگیری انجام میگیرد. معمولا پیچ و مهرههای فولادی با این فلز ، روکش داده میشوند.فولاد زنگنزن
این نوع فولاد ، جزو فلزات بسیار مقاوم در برابر خوردگی است و در صنایع شیر آلات مورد استفاده قرار میگیرد. این نوع فولاد ، آلیاژ فولاد با کروم میباشد و گاهی نیکل نیز به این آلیاژ اضافه میشود.